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The scaling solution of an unstable system driven by a Ornstein Uhlenbeck 
noise is derived from the two-variable Fokker-Planck equation. A 
quasiprobability distribution for the joint process (system parameter and noise) 
is then introduced and the system-size expansion is shown to yield a description 
of the relaxation process in the entire time domain. 
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1. I N T R O D U C T I O N  

The relaxation process of nonequilibrium system of moderate size is con- 
veniently modeled using stochastic differential equations (SDE). The noise 
terms in the SDE represent the influence of the rapidly varying degrees of 
freedom (almost infinite in number) on the system's "slowly" varying 
macroscopic parameter. Generally, the noise terms can be modeled as 
Gaussian white noisesl~); however, the need to consider the noise as an 
Ornstein-Uhlenbeck (OU) process in certain stochastic models for dye 
lasers has been demonstrated recently. (2~ Further, stochastic evolution 
driven by an OU process has been of considerable theoretical interest. (3 61 

In this paper, we are concerned with the relaxation of a system 
parameter driven by a noise from an initial unstable state to the final 
equilibrium states via nonlinear effects. (7 9) In this process, usually known 
as unstable dynamics, one can imagine the time axis to be divided into 
three regimes, an initial regime where the noise initiates the relaxation 
process; a second regime where the nonlinear effects drive the system 
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toward the final states; and a third regime where the system relaxes to the 
equilibrium states. The development of approximate theories of relaxation 
processes usually exploits the weak interaction of the noise on the system 
parameter and the simplest of such approaches is the system-size 
expansion. (l~ The system-size expansion turns out to be inadequate in the 
treatment of unstable dynamics after the lapse of the initial regime, due to 
an unbounded increase in the variance of the distribution. (8'1~ Therefore, 
there has been a great deal of interest in formulating appropriate techni- 
ques to describe (at least qualitatively) this nonlinear relaxation process. 

Scaling theory (8 101 is one such approach and has successfully eplained 
the formation of final equilibrium states. An earlier version (8'91 completely 
neglected the effect of noise on the system parameter in the second and 
third regimes; however, this has since been remedied. (~~ The techniques 
of scaling theory do not require specification of the properties of noise, 
such as its distribution, spectrum, etc. However, this fact has been 
exploited (12) in treating the unstable dynamics driven by an OU process. 

An alternative approach to treat unstable dynamics in the first and 
second time regimes has been developed (13'~41 with the introduction of a 
quasiprobability distribution. Furthermore, it has been shown (151 that the 
use of the quasiprobability distribution and system-size expansion together 
lead in a systematic way to the description of unstable dynamics in all the 
time regimes. These important developments have been given for white 
noise-induced relaxation and our main aim in this paper is to generalize 
the same to the case of an OU noise. 

Our starting point is the two-variable Fokker-Planck equation (FPE) 
describing the evolution of the system parameter X and the OU noise U. 
After stating the problem in mathematical terms in Section 2, in Section 3 
we derive the scaling solution valid in the first and second time regimes. 
The results are same as those obtained (12) based on SDE; however, we 
include this section since the FPE approach gives the probability dis- 
tribution in a direct way. In Section 4, we introduce a quasiprobability dis- 
tribution for the joint process (X, U) and show that the system-size expan- 
sion leads to a complete description of the dynamics. Thus, we generalize 
the approach of using a quasiprobability distribution to the case of colored 
noise. Finally, a brief summary is given in Section 5. 

2. S T A T E M E N T  OF T H E  P R O B L E M  

We consider the relaxation of a system modeled by the SDE 

dX/dt = h(X) + U(t) (2.1) 

where h(x) is a given function (nonlinear) of X and U(t) is the driving 
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noise term. We assume that U(t) can be modeled as a stationary O U  
process defined by the SDE 

dU/dt = - ? o  U + ~/ (2.2) 

where r/ is a Gaussian white noise with autocorrelation function (ACF) 
2eTo6(t-t ') .  The noise U(t) has ACF 

(U(t)  U(t ')) = eTo e x p ( - 7 0  r t -  t ' l) (2.3) 

Here a is the noise intensity and 701 is the correlation time of the noise. 
The specific form in Eq. (2.3) is chosen so that in the limit 7o --' Go, U(t) 
reduces to a Gaussian white noise with ACF 2e6(t - t ' ) .  

Since the noise is assumed to be stationary, its probability distribution 
is given by 

p s  = (2~ra7o) -1/2 exp( - u2/2eTo) (2.4) 

We assume that the system begins to relax at t = 0 from x = 0, which is 
an unstable point, that is, h ' ( 0 ) =  7 > 0. We use the prime to indicate the 
derivative with respect to the argument. Generally it may be assumed that 
X and U are statistically independent at t = 0 ,  so that their joint dis- 
tribution can be written as 

Pi.i(x, u) = Pi .~(x)p s (2.5) 

where P~m(x) is Gaussian distribution with variance a0, 

Pi,i(x) = ( 2 ~ o )  1/2 exp ( -x2 /2ao )  (2.6) 

The pair stochastic process (X, U) is described via the two-variable 
FPE{3 6) 

~?P/~?t = -~?/Ox{ [-h(x) + u] P} + 70 O/#u(uP + ~7o c3P/c?u) (2.7) 

We are interested in determining the conditional probability Pc(x, u, t; 
x0, u0) satisfying Eq. (2.7) so that P(x, u, t) can be obtained as 

u, t) = f Pc(x, u, t; x o, Uo) Pi,i(Xo, Uo) dxo duo (2.8) P(x, 

Our aim is to determine the marginal distribution P(x, t) 

f P(x, u, t) du = f Pc(x, t; Xo, Uo) P~i(Xo, Uo) dxo duo (2.9) P(x, t) 

where/5 c is the integral of Pe over u. Throughout  this paper we use a bar to 
indicate the average over the noise variable u. 
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3. S C A L I N G  S O L U T I O N  F R O M  T H E  FPE 

Scaling theory is an asymptotic procedure (in the limit of large t and 
small e) to extract the time-dependent evolution of the probability dis- 
tribution of the stochastic variable X. I1~ The theory shows that the 
probability distribution and hence all the moments of the stochastic 
variable depend only on a scaled time variable rsc [see Eq. (3.15) below] in 
the second time regime mentioned in the introduction. The probability dis- 
tribution obtained from this procedure allows one to compute the onset 
time, that is, the time elapsed for the onset of macroscopic order. Further- 
more, the theory shows the enhancement of fluctuation in the initial and 
second time regimes. Different approaches I8 101 using either the Langevin 
equation or the FPE have been developed to derive the scaling solution. 
We start with the FPE and the nonlinear transformation ~9'1~ 

~ = F - l [ e  ~"F(x)], 7 =h'(0)  > 0  (3.1) 

which is the solution of the deterministic equation dx/dt = h(x) with the 
initial condition x(0) = ~. The function F(x) is defined by Ira) 

F(x) = exp {f~ [7 /h(y)]dy}  (3.2) 

where a is chosen such that F'(O)= 1. We next transform the FPE (2.7) to 
the new variable ~ to obtain 

OP/c?t = - u  ~/O~[h(~)/h(x)T'] + 7o ~/~u(uP + eT0 ~P/~u) (3.3) 

where 
P(~, u, t) d~ =- P(x, u, I) dx (3.4) 

Since ~ = x at t = 0, the initial condition on Pc is 6 ( ~ -  ~0)6(u-Uo). The 
transformed FPE [Eq. (3.3)] is exact; however, it cannot be solved 
analytically when h(x) is an arbitrary nonlinear function. We therefore 
introduce the scaling approximation (m) 

h(~,)/h(x) ,~ exp( - 7t) (3.5) 

which provides the asymptotic evaluation in the sense of large t and small e 
mentioned earlier. Starting from the Langevin equation, it has been proved 
(see Section V of Ref. 10) that an approximation equivalent to that of 
Eq. (3.5) yields the dominant contribution to the moments of the stochastic 
variable in the initial and the second time regimes. With this 
approximation, Eq. (3.3) becomes 

OP/Ot = - u  8/a~(e-e@) + 70 8/Su(uP + e~o OP/Ou) (3.6) 
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FPE with linear coefficients and the 

and 

where 

g(t) = 4Wo2[(? + 70)(72 -- 7o)] - -1{  1 - -  exp[ - ( 7  + 7o)t] } 

- eTo[?(Y - 7o)5 ~ [ 1 -- e x p ( -  27t)] 

+Wo[(Y+7o)  2] t { l - e x p [ - 2 ( 7 + 7 o ) t ] } ,  7 r  

=e(47o) ~[1-exp(-47ot)]--etexp(-27ot), 7=7o  (3.9) 

Therefore, using /5  of Eq. (3.7) and /l~ini(~, /A) = Pini(X, b/) [Eqs. (2.5) and 
(2.6)], we obtain 

fi(~, t) = exp(Tt)(27cr ) -1/2 exp{ - [(exp 7t)~]2/2~ } (3.10) 

r = exp(27t)(a o + ~r~) (3.11 ) 

a:  = e?o[7(7 + ?o)] 1 _ 2e7o(72 _ 72)-1 exp[ - (y + 70)t] 

+ g7o[7(7-  7o)] 1 exp(_  27t), 7 r  

=e(27o) l[1-exp(-27ot)]--etexp(-27ot), 7=7o  (3.12) 

Next, using Eq. (3.4), it follows that 

P(x, t) = (2~r) 1/2 F'(x)[F'(F l(e-~'g(x)))] 1 

x e x p { - [ e ~ ' r  i(e ~'F(x))]2/2r} (3.13) 

In the scaling regime, Eq. (3.13) assumes the following form(m): 

Psc(X, t) ~ (27t~sc) -1/'2 F'(x) exp[-F2(x)/2~so]  (3.14) 

where 

rso = e2~'{ao + Wo[?(? + 70)] - ' }  (3.15) 

Equations (3.13)-(3.15) are identical in form to Suzuki's results <1~ [Eqs. 
(6.18) and (6.21) of Ref. 10] apart from the modified definition of the 

Equation (3.6) is a two-variable 
solution can be obtained by standard techniques. ~ We thus get 

~gc(~-, t; 4o, Uo)= (2~g) -1/2 e x p [ - ( ~  -f)2/2g] (3.7) 

where 

f(t) = 4o + Uo(? + 7o)-1{ 1 - e x p [ - ( 7  + 7o)t] } (3.8) 
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scaled time variable r. The white noise case emerges in the limit 7o--' oo. 
The onset time (~~ to can be obtained from Eq. (3.4) with the condition that 
- - t t  P~c(0, to)= 0. The result is 

to = - [ 1 / ( 2 7 ) ] l n { F " ' ( O ) [ a o + e / 7 - e / ( 7 + 7 o ) ]  } (3.16) 

If h(x)  can be expanded as 

h(x)  ~ 7[x- ~x 2 -  ~x  3 + O(x4) ] 

then U"(O)= (3/~ + 6cd)/7. We observe that the onset time increases with a 
finite correlation time 7o t of the noise. Thus, the colored noise has a 
"pullback" effect on the initial relaxation of the system. The reason for this 
can be traced to the Gaussian form of p s  and the exponential ACF of U. 

It is well known ~~ that as t ~ o% f=c(x, t) approaches to delta peaks 
around the stable equilibrium points of the system. Thus, the scaling 
solution does not incorporate the asymptotic fluctuations. In the next sec- 
tion, we show that use of a quasiprobability distribution together with the 
system-size expansion leads to a systematic procedure for incorporating 
asymptotic fluctuation into the case of colored noise. 

4. Q U A S I P R O B A B I L I T Y  D I S T R I B U T I O N  A N D  U N I F I E D  
T R E A T M E N T  OF C O L O R E D  NOISE 

It was pointed out earlier that the white noise-induced relaxation has 
been systematically treated in the entire time regime. The starting point of 
this approach ~15/ is the introduction of a quasiprobability distribution 
related to the distribution function of X. Following this approach, we 
define a joint quasiprobability distribution Q(x, u, t) 

Q(x, u, t )=  (27ce/7) -~/2 f e x p [ - ? ( x -  y)2/2~] P(y ,  u, t) ay (4.1) 

We note that Eq. (4.1) is not a generalization (~4/ of the quasiprobability 
distribution (~3) to two dimensions, even though P(x,  u, t) satisfies a two- 
dimensional FPE. The important difference here is that the two-dimen- 
sional FPE [Eq. (2.7)] has a singular diffusion matrix. 

The transformation (4.1) on Eq. (2.7) yields 

~Q/c3t= -c3 /Ox{[u+h(x+~/70 /~3x)]Q}+?oO/Ou(uQ+e?oOQ/c?u  ) (4.2) 

To first order in noise intensity (e), Eq. (4.2) can be approximated as 

c?Q/~?t = - O/~x[ (u + h - eh"/27)Q ] - ~/7 02/OxZ(h'Q ) 

+ 70 ~/Ou(uQ + eTo ~?Q/Ou) (4.3) 
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Using Eqs. (2.5) and (2.6), we can write the initial condition on Q as 

Qin~(x,u)=ps[2rC(ao+e/7)] 1/2exp[-xZ/2(ao+e/?)] (4.4) 

We wish to compute the conditional probability Qc.(x, u, t; Xo, Uo). The 
transformations for obtaining the system-size expansion (1~ on Eq. (4.3) are 

~1 = ( x -  Y)/x/-~, ~2 = ( u -  V)/x/-~ (4.5) 

The function Y and V satisfy the macroscopic equations (1/ 

dY/dt = h(Y) + V, Y(O) - xo (4.6) 

dV/dt = -7o  V, V(0) = u o (4.7) 

In the linear noise approximation ~) we obtain 

~/71et = - 3/a~1 { [~2 + h'( Y)~ ] H} - ~ -W(Y) a2H/a~ 

+ 7o 3/a~a(~2 H + ~o DH/O~2) (4.8) 

where H(~1, ~2, t)=eQo(x, u, t;xo, Uo). The initial condition on /7 is 
6(~)  6((2). Since our interest is in P(x, t), which is related to Q(x, t) by 

~)(x, t) = (27ce/~,) /2 i exp[ - 7 ( x  - y)~/2e] P(y, t) dy (4.9) 

we need to compute only (~c and hence H(~'~, t), 

t) = ,f n(~'~, ~'2, t) d~2 (4.10) H(~l, 

Equation (4.8) can again be solved by standard methods to obtain 

Qc(x, t; x0, Uo) = (2~at) 1/2 exp[ - ( x -  Y)2/2al] (4.11) 

where a~ satisfies 

da,/dt = 2h'( Y)(a~ - e/y) + 2a2 (4.12) 

da2/dt= [h'(Y)-?o]Crz+e?o[1 - exp(-27ot ) ]  (4.13) 

with the condition as(0)= 0 (i = 1, 2). Therefore, Q(x, t) can be written as 

t) = f f  (2~al) -I/2 exp[ - ( x  - Y)Z/2a1] Qini(Xo, Uo) dxo duo (4.14) 
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Note that Y= Y(xo, Uo, t) and al = al(Xo, Uo, t). It may be pointed out 
that as ~o ~ oo, V ~ 0  and a=--,e [see Eqs. (4.7) and (4.13)], hence Yand  
cr I become independent of u o and therefore we recover the reults of the 
white noise case 1151 exactly. The moments with respect to P are linked I~5) 
with the Hermite moments with respect to Q as 

< X~) p = (g/27)"/2 ( H,,[ (7/2g) I/2 X] )0 (4.15) 

Using this fact and Eq. (4.14), one can invert 1~21 Eq. (4.9) to yield 

/ . ?  

P(x, t) --- JJ [2~(al - e/y] -1/2 exp[ - (x - Y)Z/2(a I - e/y)] 

x Qini(X0, uo) dx o duo (4.16) 

It may be noted that this inversion is valid only for a1(xo, uo, t ) >  ~/7- The 
first two moments with respect to _P can be written as 

(x  )p = fl  Y(xo, Uo) Qini(X0, b/o) dxo duo (4.17) 

<X2>p= f f  [(0-1 - e/7) + y2(xo, Uo) ] Qini(Xo, uo)dxodu o (4.18) 

which are generalizations of results for the white noise case. 1~5/ We note 
that for 7o t>  1, the solution of the macroscopic equation (4.6) would 
become independent of the noise parameter V. Therefore, apart from a shift 
in the absolute values, the time dependence of the moments (X~)~ would 
be similar to that in the white noise limit. This fact has been shown from 
Monte Carlo simulation/la~ of a model problem driven by the OU noise. 
Since Eqs. (4.17) and (4.18) reduce to their white noise counterparts for 
~o t > 1, it is easy to see that they contain the asymptotic fluctuations. 

5. S U M M A R Y  

In this paper, we have derived the scaling solution for the unstable 
dynamics of a system parameter driven by an OU noise. Our treatment is 
based on the two-variable FPE for the process and has the merit of obtain- 
ing the distribution functions directly. Using the scaling solution, we have 
noted that the colored noise has a "pullback" effect on the initial relaxation 
of the system. It is reflected explicitly in the expression for the onset time. 
We have shown that the quasiprobability distribution originally defined for 
the white noise case can be generalized to incorporate a finite correlation 
time for the noise. It has been demonstrated that the usual system-size 
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expansion leads, in a systematic way, to the description of colored noise 
induced dynamics in the entire time domain. It has been argued that the 
finite correlation time of the OU noise has a significant effect on the 
average properties only in the initial time regime. 
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